Flame Retardance and Origin of Bismaleimide Resin Composites with Green and Efficient Aluminum Phosphates

Qiuqin You, Li Yuan, Hong Wang, Guozheng Liang, Aijuan Gu
Department of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
Correspondence to: A. Gu (E-mail: ajgu@suda.edu.cn) and G. Liang (E-mail: Igzheng@suda.edu.cn)

Abstract

Developing green and high efficiency inorganic flame retardants is the trend of preparing flame retarding polymer composites. Aluminum phosphates (t-hAP) with uniform, small dimension, and hexagonal structure were facilely synthesized, which have similar size $(1-2 \mu \mathrm{~m})$ but different structures from commercial spherical-like aluminum phosphate (cAP). The flame retardance of bismaleimide (BD)/t-hAP and $\mathrm{BD} / \mathrm{cAP}$ composites were intensively investigated. t -hAP is proved to have much better flame retarding effect than cAP, but also exhibits advantages over $\mathrm{Mg}(\mathrm{OH})_{2}$ and $\mathrm{Al}(\mathrm{OH})_{3}$. With only $5 \mathrm{wt} \%$ addition of t -hAP into BD resin, the peak and total heat releases as well as total smoke production significantly reduce $42.3,47.8$, and 67.3%, respectively; besides, better data are obtained as the loading of t-hAP increases to $10 \mathrm{wt} \%$. These attractive data result from three effects induced by t-hAP. Besides the better protection role of sheet structure, the strong hydrogen bonding between t -hAP and BD resin endows the composite with good dispersion of t-hAP and high crosslinking density; moreover, t-hAP releases $\mathrm{H}_{2} \mathrm{O}$ and NH_{3}, diluting flammable gases during combustion. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 41089.

KEYWORDS: composites; flame retardance; thermosets
Received 19 March 2014; accepted 30 May 2014
DOI: 10.1002/app. 41089

INTRODUCTION

High performance polymers with outstanding integrated properties have been increasingly required by the rapid development of cutting-edge fields such as electronic information, new energy, aerospace, insulation, and so on. ${ }^{1,2}$ Flame retardance becomes one essential property besides good processing characteristics, high thermal, and mechanical properties. ${ }^{3,4}$ However, almost all polymers are lack of flame retardance. Lots of researches have proved that the addition of flame retardants into a polymer is an easy and effective way to prepare flame retarding polymer composites. ${ }^{5,6}$ Recently, inorganic flame retardants have attracted wide attentions because their low toxicity and noncorrosiveness meet the developing trend on green and efficiency for flame retardants. ${ }^{7-9}$

The main flame retarding process of available inorganic flame retardants such as $\mathrm{Mg}(\mathrm{OH})_{2}$ and $\mathrm{Al}(\mathrm{OH})_{3}$ is the decomposition of the compounds at a specific temperature with the elimination of water. This endothermic process removes energy from the system, while the evaporated water serves to dilute flammable pyrolysis gases at the same time. ${ }^{10,11}$ However, to achieve acceptable combustion resistance, the concentration of inorganic
flame retardants should be large enough (for example up to 50 wt $\%$ or even more), ${ }^{12}$ but such high level of addition definitely in turn leads to deteriorated processing characteristics and mechanical property. ${ }^{13,14}$ Hence, to find a high efficiency and environmentally friendly inorganic flame retardant while maintaining the outstanding performances of original polymer is still a challenge.
For a long time, tremendous growth has been taken place to overwhelm any new attempt in preparing new functional fillers; however, there is still plenty of opportunity for finding new functional fillers by looking at existed fillers in a modified form. Aluminum phosphate (AP) is an important inorganic filler that is famous for its outstanding chemical and thermal stability, thermal-shock, and thermal oxidation resistance; moreover, as APs show the features of both metal and ceramic at high temperature, ${ }^{15-17}$ so AP can meet a variety of special requirements. In fact, AP has been used as the matrix of advanced wavetransparent composites, ${ }^{18}$ or the coating for preparing composites with outstanding thermo oxidative stability. ${ }^{19,20}$ Goedelt's group ${ }^{21}$ found that the thermal oxidative stability of carbon fibers was greatly improved by depositing AP coating with a thickness of 25 nm . Huang's ${ }^{22}$ and Deng's associates ${ }^{23}$ pointed
out that silica/AP and organosilicon/AP composites had good thermal stability. Our group found that cyanate ester (CE)/AP composites have much higher char yield $\left(Y_{c}\right)$ at high temperature than CE resin, and the experimental Y_{c} values of the composites are higher than the value calculated using the "mixture rule" ${ }^{24}$

Above researches have proved that AP has an obvious effect on improving the thermal stability of polymers, which provides a possibility for getting good flame retardance ${ }^{25,26}$; however, this is not an inevitable trend. ${ }^{27}$ Considering the importance and wide application as well as the nontoxicity, it is interesting to evaluate the flame retarding ability of AP. On the other hand, as the members of the same family of AP, aluminum hypophosphite e^{28} and aluminum diethylphosphinate ${ }^{29}$ have been reported to be flame retardants, but the flame retardance of polymer/AP composites has not been reported yet.
On the other hand, previous studies have shown that sheet-like materials, montmorillonite ${ }^{30}$ and zirconium phosphate, ${ }^{31}$ have outstanding thermal stability and flame retardance. Qu^{32} synthesized a series of needle, plate, and rod-like $\mathrm{Mg}(\mathrm{OH})_{2}$, and found that plate like $\mathrm{Mg}(\mathrm{OH})_{2}$ had better flame retardance than others. Therefore, it is interesting to synthesize AP with plate like structure.

Bismaleimide (BMI) is the representative of heat-resistant thermosetting resins, and its unique integrated performances, including outstanding heat and moisture resistance, high strength, good process characteristics, and so on, ${ }^{33}$ endowing BMI with great potential of applications in many cutting-edge fields. Therefore, BMI resin was studied as a valuable model to evaluate the possibility that AP acts as the flame retardant, and the influence of structure of AP on the flame retardance. Some interesting phenomena were observed, and the origin behind was studied.

EXPERIMENTAL

Materials

Phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}, 85\right.$ wt \%) was bought from Sinopharm Chemical Reagent (China). $\mathrm{Al}(\mathrm{OH})_{3}$ (chemical grade) was purchased from Jinan Jingyinghan Chemical (China). Cetyl trimethyl ammonium bromide (CTAB) was obtained from Sinopharm Chemical Reagent (China). Ammonia and ethanol with analytical grades were commercial products and used without further purification. BMI used herein was $4,4^{\prime}$-bismaleimidophenyl methane (BDM), which was obtained from Northwestern Institute of Chemical Engineering (China). 2, 2'-Diallyl bisphenol A (DBA) was purchased from Laiyu Chemical Factory (China). Commercial AP (cAP) was brought from Meixing Chemical of Shanghai (China).

Synthesis of Hexagonal AP (hAP)

$\mathrm{Al}(\mathrm{OH})_{3}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$ reacted at $80^{\circ} \mathrm{C}$ to get $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{3}$, which acted as the precursor of following reactions. Ammonia (the precipitating agent) was gradually dropped in $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{3}$ until the pH value of the solution reached 5 to produce hAP.
In detail, a total of 200 mL CTAB solution ($0.01 \mathrm{~mol} / \mathrm{L}$) was added into a $500-\mathrm{mL}$ three-necked flask at $80^{\circ} \mathrm{C}$ that contained
$\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{3}$ with stirring. After staying for 10 min , adjusted the temperature to $60^{\circ} \mathrm{C}$, and then, aqueous ammonia ($28 \mathrm{wt} \%$) was slowly dropped into the flask for 30 min . When the pH of the solution in the flask reached 5 , it was the end of titration. After maintained at $60^{\circ} \mathrm{C}$ for $10-12 \mathrm{~h}$, this suspension was filtered, washed with water and ethanol, successively, for six times to remove impurities, followed with drying at $80^{\circ} \mathrm{C}$ for 24 h . The resultant white powder was hAP.
hAP was thermally treated at $150^{\circ} \mathrm{C}$ for 2 h or $300^{\circ} \mathrm{C}$ for 2 h , and the resultant sample was coded as t -hAP or tt -hAP.

Preparation of BMI Resin

BDM and DBA with a molar ratio of $1: 0.86$ were blended at $135^{\circ} \mathrm{C}$ for 30 min with stirring to obtain a transparent liquid (prepolymer). The prepolymer was thoroughly degassed to remove entrapped air at $135^{\circ} \mathrm{C}$ in a vacuum oven. Subsequently, the mold was put into an oven for curing and postcuring following the protocol of $150^{\circ} \mathrm{C} / 2 \mathrm{~h}+180^{\circ} \mathrm{C} / 2 \mathrm{~h}+200^{\circ} \mathrm{C} / 2 \mathrm{~h}$ and $230^{\circ} \mathrm{C} /$ 4 h , successively, and the resultant resin was coded as BD.

Preparation of Composites

DBA and t-hAP were blended at $80^{\circ} \mathrm{C}$ with vigorous stirring and ultrasound for 30 min to form a uniform solution, into which BDM was added at $135^{\circ} \mathrm{C}$ for an additional 30 min to get $\mathrm{BD} / \mathrm{t}-\mathrm{hAP}$ prepolymer.
The prepolymer was thoroughly degassed to remove entrapped air at $135^{\circ} \mathrm{C}$ in a vacuum oven. Subsequently, the mixture was cast into a mold for curing and postcuring following the protocol of $150^{\circ} \mathrm{C} / 2 \mathrm{~h}+180^{\circ} \mathrm{C} / 2 \mathrm{~h}+200^{\circ} \mathrm{C} / 2 \mathrm{~h}$ and $230^{\circ} \mathrm{C} / 4 \mathrm{~h}$, successively. Finally the composite was demolded and coded as $\mathrm{BD} /$ nt-hAP composite, where n represents the weight loading of t hAP in $\mathrm{BD} / \mathrm{t}-\mathrm{hAP}$ system, taking the values of $5,10,15$, and 20 .
Using above procedure, $\mathrm{BD} / \mathrm{cAP}$ composite was also prepared except that t-hAP was replaced by cAP.

Characterizations

Solid state ${ }^{31} \mathrm{P}$ NMR spectra were recorded on a Bruker AV-500 MHZ spectrometer with magic angle spinning (MAS) at 15 kHz . NMR shifts are given in δ with positive value downfield of external $\mathrm{H}_{3} \mathrm{PO}_{4}\left({ }^{31} \mathrm{P}, \delta 0\right)$ reference.
Fourier transform infrared (FTIR) spectra were recorded with a resolution of $2 \mathrm{~cm}^{-1}$ on a Prostar LC240 Infrared Spectrometer (USA) between 400 and $4000 \mathrm{~cm}^{-1}$.

Thermogravimetric (TG) analyses were performed on a TGA SDTQ600 (TA Instruments, USA) in the range from 25 to $800^{\circ} \mathrm{C}$ in a nitrogen atmosphere at a heating rate of $10^{\circ} \mathrm{C} / \mathrm{min}$.
Powder X-ray diffraction (XRD) patterns were obtained on a MERCURY CCD X-Bray diffractometer (RIGAKu, Japan) with $\mathrm{CuK} \alpha$ radiation. The 2θ angle ranged from 5 to 80°, and the scanning rate was $10^{\circ} / \mathrm{min}$.

Dynamic mechanical analysis (DMA) scans were performed using TA DMA Q800 apparatus from TA Instruments (USA). A single cantilever clamping geometry was used. DMA tests were carried out from 100 to $350^{\circ} \mathrm{C}$ with a heating rate of $3^{\circ} \mathrm{C} / \mathrm{min}$ at 1 Hz . The dimensions of each sample were $(35 \pm 0.02) \times$ $(13 \pm 0.02) \times(3 \pm 0.02) \mathrm{mm}^{3}$.

$$
\begin{gathered}
\mathrm{Al}(\mathrm{OH})_{3}+9 \mathrm{H}^{+}+3 \mathrm{PO}_{4}{ }^{3-} \xrightarrow{80^{\circ} \mathrm{C}} \mathrm{Al}^{3+}+3 \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+3 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{H}^{+}+\mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O} \xrightarrow{60^{\circ} \mathrm{C}} \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{Al}^{3+}+\mathrm{PO}_{4}^{3-} \xrightarrow{60^{\circ} \mathrm{C}} \mathrm{AlPO}_{4} \\
5 \mathrm{AlPO}_{4}+3 \mathrm{NH}_{4}^{+}+3 \mathrm{H}_{2} \mathrm{PO}_{4}-\xrightarrow{60^{\circ} \mathrm{C}}\left(\mathrm{NH}_{4}\right)_{3} \mathrm{Al}_{5} \mathrm{H}_{6}\left(\mathrm{PO}_{4}\right)_{8}
\end{gathered}
$$

Scheme 1. The synthesis mechanism of hAP.

Flammability of resins was characterized using a cone calorimeter performed in a FTT0007 device from Fire Testing Technology Limited (UK) according to ISO 5660 with an incident flux of $35 \mathrm{~kW} / \mathrm{m}^{2}$ using a cone shape heater. The dimensions of sample were $(100 \pm 0.02) \mathrm{mm} \times(100 \pm 0.02) \mathrm{mm} \times(3 \pm 0.02)$ mm . For each resin or composite, three specimens were tested. Typical results from cone calorimeter were reproducible to within about $\pm 10 \%$, and the data reported here were the averages of triplicate.

Thermogravimetric analysis infrared (TG-IR) spectra were recorded using a TGA F1 (Netzsch, Germany) thermogravimetric analyzer that was interfaced to a TENSOR 27 (Bruker, Germany) FTIR spectrophotometer. About 10.0 mg of the sample was put in an alumina crucible and heated from 30 to $800^{\circ} \mathrm{C}$ with a heating rate of $10^{\circ} \mathrm{C} / \mathrm{min}$ under a nitrogen atmosphere, and the flowing rate was $20 \mathrm{~mL} / \mathrm{min}$.

RESULTS AND DISCUSSION

Synthesis and Characterization of hAP

As stated in the introduction part, one aim of our investigation reported herein is synthesizing plate-like AP. In addition, it is known that the good dispersion of inorganic fillers in the organic resin is the guarantee to get good integrated performances, so the synthesized hAP is expected to have interaction with BD resin. Briefly, the chemical and morphological structures are two important things to be addressed.

Figure 1. FTIR spectra of hAP, t-hAP, tt-hAP, and cAP. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
hAP was synthesized using the homogeneous precipitation method through the mechanism shown in Scheme $1 .{ }^{34,35}$ To confirm the chemical composition, FTIR and XRD techniques were used. The FTIR spectrum of hAP is shown in Figure 1, which has characteristic peaks assigning to the $\mathrm{O}-\mathrm{P}-\mathrm{O}$ bending vibration (ca. $474 \mathrm{~cm}^{-1}$), $\mathrm{P}-\mathrm{O}$ stretching vibration of $\left(\mathrm{PO}_{4}\right)^{3-}\left(\mathrm{ca} .714 \mathrm{~cm}^{-1}\right)$ and the stretching vibration of $\mathrm{Al}-\mathrm{O}$ in combination with $\mathrm{P}-\mathrm{O}$ (ca. $1120 \mathrm{~cm}^{-1}$), ${ }^{36}$ preliminarily reflecting that hAP is AlPO_{4}. Moreover, the spectrum also shows the bending mode of $\mathrm{HOH}(1630 \mathrm{~cm}-1)$ and characteristic peaks of $\mathrm{NH}_{4}^{+}\left(3244,1400 \mathrm{~cm}^{-1}\right)$, demonstrating that hAP prepared has $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{NH}_{4}{ }^{+}$. Note that these bounded compounds will be released when hAP is heated to enough high temperatures (for example, $>100^{\circ} \mathrm{C}$), so the concentration of these compounds should not be very large, otherwise when hAP is blended with BD resin at the temperature higher than $100^{\circ} \mathrm{C}$, a large amount of water and NH_{3} will be released, and thus make it impossible to prepare composites with good quality. Therefore, the prepared hAP has to be thermally treated to reduce the content of these compounds.

To select the procedure of the thermal treatment, the TG and DTG curves of hAP in a N_{2} atmosphere were recorded. As shown in Figure 2, there are two peaks in the DTG curve according to the temperature with the maximum decomposing rate $\left(T_{\max }\right)$, one is the strong peak that takes place over the range from 100 to $150^{\circ} \mathrm{C}$, and the other is a very small peak that occurs from 200 to $300^{\circ} \mathrm{C}$. Therefore, two procedures, $150^{\circ} \mathrm{C}$ for 2 h and $300^{\circ} \mathrm{C}$ for 2 h , were used to treat hAP, respectively.
Figure 1 also gives the FTIR spectra of the two treated hAPs. It can be seen that after treated at $150^{\circ} \mathrm{C}$ for 2 h , the resultant sample (t-hAP) still has the characteristic peaks of NH_{4}^{+}and $\mathrm{H}_{2} \mathrm{O}$, but the intensities are greatly reduced. However, after heated at $300^{\circ} \mathrm{C}$ for 2 h , no characteristic peaks of $\mathrm{NH}_{4}{ }^{+}$can be observed in the spectrum of the sample (coded as tt-hAP), similar as the spectrum of cAP. Considering the requirement of good flame retardance, treated hAP particles with some $\mathrm{NH}_{4}{ }^{+}$ and $\mathrm{H}_{2} \mathrm{O}$ were selected as the inorganic fillers to prepare BD

Figure 2. TG and DTG curves of hAP and cAP in a nitrogen atmosphere. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 3. SEM images of hAP, t-hAP, and cAP.
resin composites. So the procedure for treating hAP is selected at $150^{\circ} \mathrm{C} / 2 \mathrm{~h}$.

Figure 3 shows the SEM images of cAP, hAP, and t-hAP. Different from the spherical like of cAP, either original or treated hAP exhibits a plate structure, meaning that the treatment does not change the hexagonal and plate-like morphology of hAP. The difference between hAP and t-hAP is their sizes, Specifically, the average sizes of hAP and t-hAP are about 2-3 and 1-2 $\mu \mathrm{m}$, respectively, and the latter is similar as that of cAP.
Figure 4 shows the ${ }^{31} \mathrm{P}$ MAS NMR spectrum of hAP, which has two peaks at 5.7 and -18.5 ppm with an intensity ratio of 1 : 7, revealing that phosphate groups exist in two environments, one is protonated (5.7 ppm), and the other is nonprotonated $(-18.5 \mathrm{ppm}) .{ }^{37}$ These results are in agreement with those of a natural taranakite sample. ${ }^{38}$

XRD is one of most important technique to characterize the structure of inorganic compounds. ${ }^{39}$ Figure 5 gives the XRD patterns of hAP and t-hAP. A main diffraction peak of taranakite phase appears at $6^{\circ}(2 \theta)$, suggesting that hAP belongs to ammonium analogue of the aluminum phosphate mineral taranakite (JSD 00-028-0041). ${ }^{38}$ After treated at $150^{\circ} \mathrm{C}$ for 2 h , a significantly different pattern appears due to the loss of $\mathrm{H}_{2} \mathrm{O}$ and NH_{4}^{+}. Specifically, the XRD pattern of t -hAP contains patterns of two aluminum phosphates, of which the dominated peaks well match the standard card PDF2 No. 47-0603 for $\mathrm{AlPO}_{4}-14$ selected from the International Centre for Diffraction

Figure 4. The ${ }^{31}$ P MAS NMR spectrum of hAP.

Data (ICDD) database; and minor peaks match well the standard card PDF2 No. 40-0404 for $\mathrm{Al}_{2}\left(\mathrm{NH}_{4}\right)(\mathrm{OH})\left(\mathrm{PO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in the ICDD database, ${ }^{40}$ so t-hAP has two crystal structures, and can be regarded as aluminum phosphates.

Flame Retardance of BD/t-hAP and BD/cAP Composites

Cone calorimeter test is an effective technique for simulating the real fire of materials in laboratory, from which many meaningful parameters will be obtained, such as ignition behavior, heat release, and smoke evolution. ${ }^{41} \mathrm{BD} / \mathrm{t}-\mathrm{hAP}$ composites could not be ignited under the irradiation flow at $35 \mathrm{~kW} / \mathrm{m}^{2}$; however, $\mathrm{BD} /$ cAP composites could, preliminarily suggesting that t-hAP has much better flame retarding effect than cAP. To make a quantitative comparison, the sparking manner was used to carry out cone calorimeter tests for both $\mathrm{BD} / \mathrm{t}-\mathrm{hAP}$ and $\mathrm{BD} / \mathrm{cAP}$ composites.
Table I summarizes the typical data of BD resin, $\mathrm{BD} / \mathrm{cAP}$ and BD/t-hAP composites from cone calorimeter tests. Each value has its own physical meaning, which represents the flame retardance from a specific angle; hence, the combination of these data will give us a full knowledge on the flame retardance of the materials.

Fire performance index (FPI), defined as the ratio of the time to ignition (TTI) to the peak of heat release rate (pHRR), has been suggested to be a parameter that relates to the time to

Figure 5. XRD patterns of original and treated hAPs. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Table I. Typical Data of BD Resin, BD/cAP, and BD/t-hAP Composites from Cone Calorimeter Tests

Sample	$\mathrm{FPI}\left(\mathrm{m}^{2} \mathrm{~s} / \mathrm{kW}\right)$	$\mathrm{TTI}(\mathrm{s})$	$\mathrm{pHRR}\left(\mathrm{kW} / \mathrm{m}^{2}\right)$	$\mathrm{THR}\left(\mathrm{MJ} / \mathrm{m}^{2}\right)$	Mean CO $(\mathrm{kg} / \mathrm{kg})$	$\mathrm{TSR}\left(\mathrm{m}^{2}\right)$
BD	0.32 ± 0.01	108 ± 2	334.4 ± 20	76.28 ± 3.0	0.096 ± 0.005	21.46 ± 2
$\mathrm{BD} / 5 \mathrm{cAP}$	0.49 ± 0.01	117 ± 1	238.4 ± 18	58.33 ± 2.8	0.043 ± 0.002	14.27 ± 1
$\mathrm{BD} / 10 \mathrm{cAP}$	0.52 ± 0.01	121 ± 3	233.3 ± 16	49.64 ± 1.2	0.052 ± 0.003	13.46 ± 1
$\mathrm{BD} / 15 \mathrm{cAP}$	0.47 ± 0.01	120 ± 2	231.8 ± 20	46.14 ± 3.0	0.043 ± 0.002	9.46 ± 0.8
$\mathrm{BD} / 20 \mathrm{cAP}$	0.45 ± 0.01	120 ± 3	265.9 ± 25	56.81 ± 1.5	0.051 ± 0.002	12.39 ± 0.5
BD/5t-hAP	0.52 ± 0.01	101 ± 2	192.8 ± 12	39.85 ± 1.5	0.042 ± 0.001	7.02 ± 0.7
BD/10t-hAP	0.79 ± 0.01	112 ± 3	142.5 ± 15	39.23 ± 2.2	0.032 ± 0.003	7.31 ± 0.5
BD/15t-hAP	0.79 ± 0.02	102 ± 2	128.6 ± 14	32.56 ± 2.5	0.031 ± 0.001	5.72 ± 0.5
BD/20t-hAP	0.57 ± 0.01	94 ± 3	163.8 ± 17	37.51 ± 3.0	0.041 ± 0.002	6.75 ± 0.6

flash over in a full-scale fire situation, and thus refers to the risk of materials for catching fire. ${ }^{42}$ All composites have higher FPI values than $B D$ resin, demonstrating that the addition of either cAP or t-hAP into BD resin can effectively reduce the risk of the resin for catching fire. Noting that t-hAP shows remarkable advantage over cAP, for example, FPI values of BD/ $10 t-h A P$ and $\mathrm{BD} / 10 \mathrm{cAP}$ composites are 2.5 and 1.6 times of that of BD resin, respectively.
Heat release rate (HRR), including peak heat release rate (pHRR) and total heat release (THR), is the most important parameter that represents the intensity of combustion under the test condition. ${ }^{43}$ Figure 6 shows the HRR as a function of time. BD resin has a broad and asymmetrical peak, which exhibits two peaks around the pHRR and lasts 144 s , indicating that the initially formed char is not strong enough to retard the continuous combustion. With the addition of 5 wt \% cAP, a board HRR peak is found, but the intensity is reduced. As the content of cAP increases, the width and height of the HRR peak gradually become narrower and weaker. This trend also appears in the BD / t-hAP composites except that the change degree is much obvious. For example, the pHRR and THR values of

Figure 6. Overlay plots of dependence of HRR on time for BD resin, $\mathrm{BD} /$ cAP and BD/t-hAP composites. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
$\mathrm{BD} / 5 \mathrm{cAP}$ composite are about 71.2% and 74.6% of those of BD resin, respectively; while those of $\mathrm{BD} / 5 \mathrm{t}-\mathrm{hAP}$ composite are severally only 57.7% and 52.2% of those of BD resin.
Previous studies found that zirconium phosphate, ${ }^{44}$ carbon nanotube, ${ }^{45}$ or clay ${ }^{46}$ can only significantly reduce the pHRR value but not the THR. This phenomenon was also observed in the composites containing $\mathrm{Mg}(\mathrm{OH})_{2}$ and $\mathrm{Al}(\mathrm{OH})_{3}$. For example, with the addition of $40 \mathrm{wt} \% \mathrm{Mg}(\mathrm{OH})_{2}$ into high impact polystyrene, the pHRR was reduced 67.7%, but the THR was only reduced $9.2 \% .^{47}$ Similarly, the addition of $47.5 \mathrm{wt} \%$ $\mathrm{Al}(\mathrm{OH})_{3}$ into poly(ethylene-co-vinyl acetate) brings 71% reduction of pHRR and 25% reduction of THR. ${ }^{48}$ Therefore, both t-hAP and cAP, especially t-hAP, have obvious advantage over these classic inorganic fillers in reducing HRR and THR.

The origin behind the different shapes of HRR-time plots for BD resin, $\mathrm{BD} / \mathrm{cAP}$ and $\mathrm{BD} / \mathrm{t}-\mathrm{hAP}$ composites may be revealed through the discussion of the dependence of the normalized mass loss on the time during the whole combustion process as shown in Figure 7(a). After ignition, BD resin quickly loses its weight; while the two composites lose their weights in much slower rates, especially $\mathrm{BD} / \mathrm{t}-\mathrm{hAP}$ composites. For each kind of composites, with the increase of the content of fillers, the residual mass increases and reaches the maximum value and then decreases. The maximum values for $\mathrm{BD} / \mathrm{cAP}$ and $\mathrm{BD} / \mathrm{t}-\mathrm{hAP}$ composites are 10 and $15 \mathrm{wt} \%$, respectively. This is because the dispersion of fillers is closely related to the nature and the content of fillers. Generally, the presence of cAP and t-hAP can retard the mass loss, so the more loading tends to get big retarding effect; however, when the content of fillers is large enough, the agglomeration of fillers is obvious. As a result, the retarding effect of fillers is also dependent on the content of fillers. Note that BD/5t-hAP composite has higher residue than all $\mathrm{BD} / \mathrm{cAP}$ composites, so t-hAP has much better flame retarding effect than cAP.

Figure $7(\mathrm{~b})$ is the digital photos of residual chars for BD resin, $\mathrm{BD} / 10 \mathrm{cAP}$, and $\mathrm{BD} / 10 \mathrm{t}-\mathrm{hAP}$ composites after cone calorimeter tests. All chars have enlarged sizes than their original material, but BD/hAP char has the smallest enlarging degree, other two chars have similar enlarging degree. Besides this difference, the three chars have different morphologies. In detail, the surface of

Figure 7. Overlay plots of dependence of mass on time (a) and digital photos of chars for BD resin, BD/10cAP and BD/10t-hAP composites (b). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

BD char is so thin and loose that is easy to collapse. This phenomenon is somewhat changed by the addition of cAP, while the residue of $\mathrm{BD} / 10 \mathrm{t}-\mathrm{hAP}$ composite is completely different, its char is thick and compact. These phenomena indicate that the flame retarding effect of t-hAP is different from that of cAP. Detail discussion is presented in the following part.

As we've known that high smoke suppression becomes one important index of evaluating the flame retardance of a material because it is smoke, rather than the heat, that is responsible for the death in real fire hazards. ${ }^{49} \mathrm{CO}$ is the major toxic gas for halogen-free flame retardants. ${ }^{50,51}$ The mean CO release of BD / t hAP or BD/cAP composite is only $32-44 \%$ or $45-54 \%$ of that of BD resin. It was found that the addition of alkyl phosphinate, ${ }^{52}$ clay, ${ }^{53}$ or $\mathrm{Mg}(\mathrm{OH})_{2}{ }^{54}$ into polymers would increase the CO release. For example, the addition of $\mathrm{Mg}(\mathrm{OH})_{2}$ to poly(vinyl chloride) would increase the average release of CO from 1.20 to
$1.44 \mathrm{~kg} / \mathrm{kg} .{ }^{54}$ Therefore, it is reasonable to state that t-hAP and cAP have attractive ability of reducing the generation of CO, and they are green flame retardants, especially t-hAP.

Figure 8 shows the overlay curves of smoke produce rate (SPR) as a function of time for BD resin, $\mathrm{BD} / \mathrm{cAP}$ and $\mathrm{BD} / \mathrm{t}-\mathrm{hAP}$ composites. All BD/t-hAP composites have lower SPR values than $\mathrm{BD} / \mathrm{cAP}$ composites, and the SPR values of BD/t-hAP and BD/ cAP composites are only about $29-44 \%$ of that of BD resin, so does the total smoke production (TSP) values (Table I), hence both cAP and t-hAP have effective ability of smoke suppression, while the ability of t -hAP is much better. Magnesium hydroxides are famous for their high smoke suppression; ${ }^{55}$ however, to achieve the same effect as t-hAP, their additions should be as high as $50 \mathrm{wt} \%{ }^{56}$ Obviously, such high loading of magnesium hydroxides usually leads to poor processing characteristic and mechanical performances.

Figure 8. Overlay plots of dependence of SPR on time for BD resin, BD/ cAP , and $\mathrm{BD} / \mathrm{t}-\mathrm{hAP}$ composites. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 9. Crosslinking densities of BD resin, $\mathrm{BD} / \mathrm{cAP}$, and $\mathrm{BD} / \mathrm{t}-\mathrm{hAP}$ composites.

Figure 10. FTIR spectra of cAP, t-hAP, DBA/10cAP, and DBA/10t-hAP blends. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Flame Retarding Origin of BD/t-hAP Composites

The performance of a material is determined by its structure, so the structures should be studied first to answer the origin behind the difference in the flame retardance of BD resin, $\mathrm{BD} /$ $c A P$, and BD/t-hAP composites. For a thermosetting resin and related composites, their structure is divided into polymer chain and aggregation state structures. The former can be reflected by the curing mechanism, and the latter can be characterized by the crosslinking density. ${ }^{57}$

Since there are no reactive groups on the surfaces of cAP and t$h A P$, so $\mathrm{BD}, \mathrm{BD} / 10 \mathrm{cAP}$ and $\mathrm{BD} / 10 t-\mathrm{hAP}$ prepolymers have the same curing mechanism. Specifically, the curing mechanism of these samples contains multiple reactions, including "Ene addition" and "Diels-Alder" reactions between maleimide groups
of BDM and allyl groups of DBA, ${ }^{58}$ and the self-polymerization of BDM via double bond addition of maleimide groups. ${ }^{59}$
The crosslinking densities for BD resin, $\mathrm{BD} / \mathrm{cAP}$, and BD / t hAP composites were estimated by the classical equation based on the statistical theory of rubber elasticity as shown in eq. (1): ${ }^{60}$

$$
\begin{equation*}
\rho_{(c)}=\frac{G^{\prime}}{3 \Phi R T} \tag{1}
\end{equation*}
$$

where $\rho_{(c)}$ is crosslinking density; G^{\prime} is the storage modulus of the composite in the rubbery plateau region from DMA tests, herein, G^{\prime} is chosen as the modulus at the temperature (T) that is $20^{\circ} \mathrm{C}$ higher than glass transition temperature $\left(T_{g}\right) ; \Phi$ is the front factor, and assumed to be $1 ; R$ is the gas constant.

BD/10cAP

BD/10t-hAP
Figure 11. Al and P mappings of $\mathrm{BD} / 10 \mathrm{cAP}$ and $\mathrm{BD} / 10 \mathrm{t}-\mathrm{hAP}$ composites. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 12. TG and DTG curves of BD resin, $\mathrm{BD} / 10 \mathrm{cAP}$, and $\mathrm{BD} / 10 t-\mathrm{hAP}$ composites in a nitrogen atmosphere. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

The corresponding $\rho_{(c)}$ values of BD resin, $\mathrm{BD} / \mathrm{cAP}$, and $\mathrm{BD} / \mathrm{t}-$ hAP composites are depicted in Figure 9. The BD/t-hAP composite has higher crosslinking density than the $\mathrm{BD} / \mathrm{cAP}$ composite with the same content of fillers. Since both surfaces of cAP and t -hAP have water molecules, so both fillers are expected to have interaction with DBA through hydrogen bonds. Figure 10 shows the FTIR spectra of DBA/10cAP and DBA/10t-hAP blends. The hydroxyl absorption ($3448 \mathrm{~cm}^{-1}$) is observed in the spectrum of either cAP, t-hAP, or DBA, which also appears in the spectra of two blends but shifts toward low wavenumber, suggesting that the spectra of these blends are not the simple combination of those of the components of the blends. ${ }^{61}$ Meanwhile, the hydroxyl absorption ($3415 \mathrm{~cm}^{-1}$) in the spectrum of DBA/10t-hAP is lower and wider than that ($3432 \mathrm{~cm}^{-1}$) of DBA/10cAP, meaning that the hydrogen bond between t-hAP
and DBA is stronger than that between cAP and DBA. It is mainly due to the fact that t -hAP has more -OH groups than cAP, providing more physical crosslinking points. As a result, $\mathrm{BD} / \mathrm{t}-\mathrm{hAP}$ composite has higher $\rho_{(c)}$ value than $\mathrm{BD} / \mathrm{cAP}$ composite with the same loading of fillers.

To investigate the influence on the interaction between fillers on the morphological structure, the morphologies of two kinds of composites were observed. Figure 11 shows the Al and P mappings of composites using the EDS technique, the bright green and yellow dots represent Al and P atoms distributed in the BD resin, respectively. The aggregations are observed in either Al or P mapping of the $\mathrm{BD} / 10 \mathrm{cAP}$ composite; however, this phenomenon doesn't appear in the BD/10t-hAP composite, clearly demonstrating that t -hAPs have better dispersion in BD resin while cAPs have not. The strong hydrogen bonds between t-hAP and DBA are responsible for this result.

The flame retardance of a polymer usually depends on many factors, among them the thermal stability, decomposition rate, producing rate of char and char yield during the degradation process are three key ones, ${ }^{62}$ so it is worth paying great attentions on discussing the thermo degradation behavior. Figure 12 shows the TG and DTG curves of BD resin, $\mathrm{BD} / 10 \mathrm{cAP}$, and $\mathrm{BD} /$ $10 t-h A P$ composites in a nitrogen atmosphere. The addition of t-hAP or cAP only slightly increases the initial decomposition temperature $\left(T_{d i}\right)$, but greatly increases the Y_{c} at $800^{\circ} \mathrm{C}$; specifically, the experimental Y_{c} value of $\mathrm{BD} / 10 \mathrm{t}-\mathrm{hAP}$ composite is 53.5%, which is much higher than the calculated value (31.8%) based on the "Mixture rule," ${ }^{63}$ while the experimental Y_{c} value (33.4%) of $\mathrm{BD} / 10 \mathrm{cAP}$ composite is almost equal to that of calculated value (31.8%). so it is reasonable to state that t-hAP has high abilities of char-forming and retarding the thermal decomposition of BD resin, and this is beneficial to endow the crosslinked network with very good flame retardance.

Figure 13. Three-dimensional FTIR spectra of BD resin, $\mathrm{BD} / 10 \mathrm{cAP}$, and $\mathrm{BD} / 10 \mathrm{t}-\mathrm{hAP}$ composites. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 14. FTIR spectra of volatilized products at typical temperatures during the thermal degradation of BD resin, $\mathrm{BD} / 10 \mathrm{cAP}$, and $\mathrm{BD} / 10 t-\mathrm{hAP}$ composites. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

TG-IR technique is useful to reveal the thermal degradation mechanism of polymers by detecting the volatile degradation products. ${ }^{64,65}$ Figure 13 shows the 3D TG-FTIR spectra of pyrolysis products of BD resin, $\mathrm{BD} / 10 \mathrm{cAP}$, and $\mathrm{BD} / 10 t-h \mathrm{AP}$ composites. All spectra show the absorption peak ($1715 \mathrm{~cm}^{-1}$) assigning to carbonyl, and which is the strongest peak in the spectrum of either BD resin or $\mathrm{BD} / 10 \mathrm{cAP}$ composite. With careful observation, it is found that the intensity of this peak is different in three spectra; the intensities of the absorption peak in the spectra of $\mathrm{BD} / 10 \mathrm{cAP}$ and $\mathrm{BD} / 10 \mathrm{t}-\mathrm{hAP}$ composites are about 50% and 14% of that of BD resin, respectively, implying that the amount of the volatiles released from each composite is much less than that from BD resin. In other words, the presence of t -hAP or cAP can effectively retard the thermal decomposition of BD resin, especially t-hAP. This statement is further confirmed with following intensive discussion.
To provide an easier comparison, the FTIR spectra of the gaseous volatiles evolved at different temperatures corresponding to absorbance peaks are represented in Figure 14. When the
temperature increases to $800^{\circ} \mathrm{C}$, in the FTIR spectrum of BD resin, no stretching absorption of hydrocarbon $\left(\mathrm{CH} / \mathrm{CH}_{2} / \mathrm{CH}_{3}\right.$, $\left.2800-3100 \mathrm{~cm}^{-1}\right)^{66}$ is observed, but the peak representing CO_{2} stretching ($2360 \mathrm{~cm}^{-1}$) is still found, indicating that all organic compositions have been decomposed. With regard to the spectrum of $\mathrm{BD} / 10 \mathrm{cAP}$ composite, in which there is a strong absorption assigning to hydrocarbon, while the absorption of CO_{2} is weak, reflecting that some organic compounds remain and are stable. The obvious difference between BD resin and $\mathrm{BD} / 10 \mathrm{cAP}$ composite demonstrates that the presence of cAP can effectively improve the thermal stability.

In the case of the FTIR spectrum of BD/10t-hAP composite, which is found to have other special characteristic that is totally different from those of BD resin and $\mathrm{BD} / 10 \mathrm{cAP}$ composite. Specifically, the temperature for releasing pyrolysis products of $\mathrm{BD} /$ $10 t-h A P$ composite mainly ranges from 400 to $560^{\circ} \mathrm{C}$, and few gases are produced when the temperature is higher than $640^{\circ} \mathrm{C}$. Combined with above results from cone calorimeter tests, it is concluded that t-hAP is a good smoke suppressor. Besides, the

Figure 15. SEM micrographs of residual chars of $B D$ resin (a, b), BD/10cAP composite ($c, \mathrm{~d}$) and BD/10t-hAP composite (e, f) after cone calorimeter tests.
evolved gas analysis of $\mathrm{BD} / 10 \mathrm{t}-\mathrm{hAP}$ composite exhibits the characteristic bands of $\mathrm{H}_{2} \mathrm{O}\left(3500-3800 \mathrm{~cm}^{-1}\right)^{66}$ and $\mathrm{NH}_{3}(3340$, $970 \mathrm{~cm}^{-1}$), ${ }^{67}$ the $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{NH}_{4}{ }^{+}$could dilute the combustible gas, and thus helping to retard the combustion.

From above results, it is noted that the main evolved gas products for $\mathrm{BD} / 10 \mathrm{t}-\mathrm{hAP}$ composite are different from those of BD resin and $\mathrm{BD} / 10 \mathrm{cAP}$ composite. The pyrolysis products of BD resin and $\mathrm{BD} / 10 \mathrm{cAP}$ composite are mainly composed of CO_{2} ($2360 \mathrm{~cm}^{-1}$), hydrocarbon (2800-3100 cm^{-1}) and compounds containing carbonyl ($1715 \mathrm{~cm}^{-1}$) that are responsible for the high HRR value as well as aromatic compounds ($1512 \mathrm{~cm}^{-1}$) that are the important source of smoke toxicity. ${ }^{68}$ The BD/10t-hAP composite releases additional water and NH_{3}, and less production of gases after $640^{\circ} \mathrm{C}$. It is known that the main flame retarding mechanism of $\mathrm{Mg}(\mathrm{OH})_{2}$ and $\mathrm{Al}(\mathrm{OH})_{3}$ is decomposing at a specific temperature with the elimination of water. This feature also appears in t-hAP, which is one important reason that t -hAP has outstanding flame retarding effect.

The residual char of a polymer can prevent the burning of combustible materials derived from the degradation and the entrance of heat; hence, the char plays an important role in the flame retarding performance. ${ }^{69}$ Figure 15 shows the SEM micrographs of the residual chars of BD resin, $\mathrm{BD} / 10 \mathrm{cAP}$, and $\mathrm{BD} /$ $10 t-h A P$ composites after combustion tests. For the char of BD resin, both external and internal parts have large holes [Figure $15(\mathrm{a}, \mathrm{b})$]; this phenomenon is improved with the addition of cAP; however, some big holes are still observed in external and internal parts [Figure $15(\mathrm{c}, \mathrm{d})$]. A significantly different morphology appears in the char of $\mathrm{BD} / 10 \mathrm{cAP}$ composite, the external part of BD/10t-hAP char is covered with a thick char layer [Figure 15(e)], and its internal part shows small, uniform and honeycomb porosity [Figure 15(f)]. Therefore, the addition of fillers and the nature of fillers play important roles on the morphology of chars, and t-hAP has an ability to form strong char layer.

CONCLUSIONS

Hexagonal aluminum phosphate ammonium taranakite (hAP) with uniform and small dimension was facilely synthesized using the homogeneous precipitation method. After treated at $150^{\circ} \mathrm{C}$ for 2 h , the resultant t-hAP has two crystal structures of aluminum phosphates. cAP and t-hAP have flame retarding effect, but t-hAP has much bigger effect due to its unique structure. Specifically, compared with cAP, the hexagonal structure and good dispersion of t-hAP in BD resin provide very effective heat insulating and barrier effects; furthermore, t-hAP has a bigger ability in forming strong char layer, and will release $\mathrm{H}_{2} \mathrm{O}$ and NH_{3} to dilute flammable gas. These multiple functions make t -hAP act as a super flame retardant.

ACKNOWLEDGMENTS

The authors thank the National Natural Science Foundation of China (21274104), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and Suzhou Applied Basic Research Program (SYG201141) for financially supporting this project.

REFERENCES

1. Wang, C. Q.; Ge, F. Y.; Sun, J.; Cai, Z. S. J. Appl. Polym. Sci. 2013, 130, 916.
2. Jung, N.; Kim, S. M.; Kang, D. H.; Chung, D. Y.; Kang, Y. S.; Chung, Y. H.; Choi, Y. W.; Pang, C.; Suh, K. Y.; Sung, Y. E. Chem. Mater. 2013, 25, 1526.
3. Song, P. A.; Shen, Y.; Du, B. X.; Guo, Z. H.; Fang, Z. P. Nanoscale 2009, 1, 118.
4. Ma, H. Y.; Wang, J.; Fang, Z. P. Polym. Degrad. Stab. 2012, 97, 1596.
5. Duquesne, S.; Fontaine, G.; Cerin-Delaval, O.; Gardelle, B.; Tricot, G.; Bourbigot, S; Thermochim. Acta 2013, 551, 175.
6. Wang, X.; Hu, Y.; Song, L.; Xing, W. Y.; Lu, H. D. J. Polym. Sci. Pol. Phys. 2010, 48, 693.
7. Hapuarachchi, T. D.; Peijs, T. Compos. Part A: Appl. S. 2010, 41, 954.
8. Brehme, S.; Schartel, B.; Goebbels, J.; Fischer, O.; Pospiech, D.; Bykov, Y.; Doring, M. Polym. Degrad. Stab. 2011, 96, 875.
9. Schartel, B.; Weiss, A.; Sturm, H.; Kleemeier, M.; Hartwig, A.; Vogt, C.; Fischer, R. X. Polym. Adv. Technol. 2011, 22, 1581.
10. Konnicke, D.; Kuhn, A.; Mahrholz, T.; Sinapius, M. J. Mater. Sci. 2011, 46, 7046.
11. Xu, T.; Huang, X. M. J. Anal. Appl. Pyrol. 2010, 87, 217.
12. Antunes, M.; Velasco, J. I.; Haurie, L. J. Cell. Plast. 2013, 47, 17.
13. Wang, Z. Y.; Liu, Y.; Wang, Q. Polym. Degrad. Stab. 2010, 95, 945.
14. Wang, Z. Z.; Qu, B. J.; Fan, W. C.; Huang, P. J. Appl. Polym. Sci. 2001, 81, 206.
15. Chung, D. D. L. J. Mater. Sci. 2003, 38, 2785.
16. Hoshii, S.; Kojima, A.; Tamaki, T.; Otani, S. J. Mater. Sci. Lett. 2000, 19, 557.
17. Han, H. J.; Kim, D. P. J. Sol-Gel Sci. Technol. 2003, 26, 223.
18. Lu, Z. Y.; Geng, H. R.; Zhang, M. X.; Hou, X. Q. Chinese. Sci. Bull. 2008, 53, 3073.
19. Wang, K. T.; Cao, L. Y.; Huang, J. F.; Fei, J.; Zhang, B. Y. Ceram. Int. 2013, 39, 1037.
20. Tricot, G.; Nicolaus, N.; Diss, P.; Montagne, L. Carbon 2012, 50, 3440.
21. Knohl, S.; Roy, A. K.; Lungwitz, R.; Spanle, S.; Mkler, T.; Nestler, D. J.; Wielage, B.; Schulze, S.; Hietschold, M.; Wulff, H.; Heim, C. A.; Seide, F.; Zahn, D. R. T.; Goedelt, W. A. ACS Appl. Mater. Interfaces 2013, 5, 6161.
22. Deng, S. F.; Wang, C. F.; Zhou, Y.; Huang, F. R.; Du, L. Int. J. Appl. Ceram. Tec. 2011, 8, 360.
23. Deng, S. F.; Wang, C. F.; Zhou, Y.; Huang, F. R.; Du, L. Mater. Sci. Eng. A 2008, 477, 96.
24. Sun, Z. Q.; Gu, A. J.; Liang, G. Z.; Dai, S. K.; Yuan, L. J. Appl. Polym. Sci. 2009, 113, 3427.
25. Gu, A. J.; Liang, G. Z. Polym. Degrad. Stab. 2003, 80, 383.
26. Mariappan, T.; You, Z.; Hao, J. W.; Wilkie, C. A. Eur. Polym. J. 2013, 49, 3171.
27. Lavorgna, M.; Romeo, V.; Martone, A.; Zarrelli, M.; Giordano, M.; Buonocore, G. G.; Qu, M. Z.; Fei, G. X.; Xia, H. S. Eur. Polym. J. 2013, 49, 428.
28. Yuan, B. H.; Bao, C. L.; Guo, Y. Q.; Song, L.; Liew, K. M.; Hu, Y. Ind. Eng. Chem. Res. 2012, 51, 14065.
29. Liu, X. Q.; Liu, J. Y.; Cai, S. J. Polym. Compos. 2012, 33, 918.
30. Wang, L.; Sanchez-Soto, M.; Maspoch, M. L. Mater. Des. 2013, 52, 609.
31. Xing, W. Y.; Jie, G. X.; Song, L.; Wang, X.; Lv, X. Q.; Hu, Y. A. Mater. Chem. Phys. 2011, 125, 196.
32. Lv, J. P.; Qiu, L. Z.; Qu, B. J. Nanotechnology 2004, 15, 1576.
33. Yao, W.; Gu, A. J.; Liang, G. Z.; Zhuo, D. X.; Yuan, L. Polym. Adv. Technol. 2012, 23, 326.
34. Kawamura, K.; Shibuya, K.; Okuwaki, A. Mater. Res. Bull. 2007, 42, 256.
35. Wei, L. Q.; Ye, S. F.; Tian, Y. J.; Xie, Y. S.; Chen, Y. F. J. Cryst. Growth 2009, 311, 3359.
36. Chen, C. M.; Jehng, J. M. Catal. Lett. 2003, 85, 73.
37. Bleam, W. F.; Pfeffer, P. E.; Frye, J. S. Phys. Chem. Miner. 1989, 16, 809.
38. Schwieger, W.; Altenschildesche, H. M. Z.; Kokotailo, G. T.; Fyfe, C. A. Z. Anorg. Allg. Chem. 1998, 624, 1712.
39. Neira, I. S.; Kolen'ko, Y. V.; Lebedev, O. I.; Van Tendeloo, G.; Gupta, H. S.; Guitian, F.; Yoshimura, M. Cryst. Growth. Des. 2009, 9, 466.
40. Pluth, J. J.; Smith, J. V. Acta Cryst. 1984, C40, 2008.
41. Chen, Y. H.; Liu, Y.; Wang, Q.; Yin, H.; Kierkels, N. Polym. Degrad. Stab. 2003, 81, 215.
42. Cogen, J. M.; Lin, T. S.; Lyon, R. E. Fire Mater. 2009, 33, 33.
43. Schartel, B.; Hull, T. Fire Mater. 2007, 31, 327.
44. Lu, H. D.; Wilkie, C. A.; Ding, M.; Song, L. Polym. Degrad. Stab. 2011, 96, 1219.
45. Song, P. A.; Zhao, L. P.; Cao, Z. H.; Fang, Z. P. J. Mater. Chem. 2011, 21, 7282.
46. Tai, Q. L.; Shan, X. Y.; Song, L.; Lo, S. M.; Yuen, R. K. K.; Hu, Y. Polym. Compos. 2014, 35, 167.
47. Chang, S. Q.; Xie, T. X.; Yang G. S. Polym. Degrad. Stab. 2006, 91, 3266.
48. Jiao, C. M.; Chen, X. L. J. App. Polym. Sci. 2010, 116, 1889.
49. Lorenzetti, A.; Modesti, M.; Besco, S.; Hrelja, D.; Donadi, S. Polym. Degrad. Stab. 2011, 96, 1455.
50. Hull, T. R.; Stec, A. A.; Lebek, K.; Price, D. Polym. Degrad. Stab. 2007, 92, 2239.
51. Hull, T. R.; Quinn, R. E.; Areri, I. G.; Purser, D. A. Polym. Degrad. Stab. 2002, 77, 235.
52. Gallo, E.; Braun, U.; Schartel, B.; Russo, P.; Acierno, D. Polym. Degrad. Stab. 2007, 94, 1245.
53. Sheng, F. F.; Tang, X. Z.; Zhang, S.; Ding, X. J.; Yu, Z. Z.; Qiu, Z. B. Polym. Adv. Technol. 2012, 23, 137.
54. Qu, H. Q.; Liu, C. H.; Wu, W. H.; Chen, L. Z.; Xu, J. Z. J. Therm. Anal. Calorim. 2014, 115, 1081.
55. Kim, S. J. Polym. Sci. Part B-Polym. Phys. 2003, 41, 936.
56. Yen, Y. Y.; Wang, H. T.; Guo, W. J. Polym. Degrad. Stab. 2012, 97, 863.
57. Zhuo, D. X.; Gu, A. J.; Liang, G. Z.; Hu, J. T.; Yuan, L.; Chen, X. X. J. Mater. Sci. 2011, 46, 1571.
58. Zhuo, D. X.; Gu, A. J.; Liang, G. Z.; Hu, J. T.; Yuan, L.; Chen, X. X. J. Mater. Chem. 2011, 21, 6584.
59. Xiong, Y.; Boey, F. Y. C.; Rath, S. K. J. Appl. Polym. Sci. 2003, 90, 2229.
60. Rozenberg, B. A.; Dzhavadyan, E. A.; Morgan, R.; Shin, E. Polym. Adv. Technol. 2002, 13, 837.
61. Kumar, S.; Nair, R. C. P.; Ninan, K. N. Eur. Polym. J. 2009, 45, 494.
62. Chen, Y. H.; Liu, Y.; Wang, Q.; Yin, H.; Kierkels, N. Polym. Degrad. Stab. 2003, 81, 215.
63. Mi, Y. N.; Liang, G. Z.; Gu, A. J.; Zhao, F. P.; Yuan, L. Ind. Eng. Chem. Res. 2013, 52, 3342.
64. Wu, K.; Song, L.; Hu, Y.; Lu, H. D.; Kandolac, B. K.; Kandare, E. Prog. Org. Coat. 2009, 65, 490.
65. Zhang, P.; Hu, Y.; Song, L.; Ni, J. X.; Xing, W. Y.; Wang, J. Sol. Energy Mater. Sol. Cells 2010, 94, 360.
66. Wu, K.; Zhang, Y. K.; Zhang, K.; Shen, M. M.; Hu, Y. J. Anal. Appl. Pyrol. 2012, 94, 196.
67. Tai, Q. L.; Yuen, R. K. K.; Yang, W.; Qiao, Z. H.; Song, L.; Hu, Y. Compos. Part A-Appl. Sci. Manuf. 2012, 43, 415.
68. Xu, T.; Huang, X. M. J. Anal. Appl. Pyrol. 2010, 87, 217.
69. Chen, J.; Liu, S. M.; Zhao, J. Q. Polym. Degrad. Stab. 2011, 96, 1508.
